Name:
 \qquad
 Period:
 Mass Transit Proposal

\qquad Date: \qquad

Directions: Answer the following questions before you begin the activity.

1. An object is in \qquad when its distance from another object is changing.
2. A \qquad is a place or an object that is used for comparison to see if an object is in motion.
3. Describe how you can measure the distance an object has moved.
\qquad
\qquad
\qquad
4. Explain how you know an object is in motion.

Directions: Using only the materials that were given to you, your team must design a vehicle that will transport mass across the room in the shortest possible time.

Sketch your plan below:
\square

Get your teacher's initials once you have finalized your plan. \qquad

Setup your vehicle and observe how it travels. Record your observations below (How can you improve on your design, did you notice any problems?)
\qquad
\qquad
\qquad
\qquad
4. What were some of the observations other groups made?
\qquad
\qquad
\qquad
\qquad

After making any changes to your vehicle, test and record your data below in the table for 3 trials.

Trial Number	Time (X-Axis)	Distance (Y-Axis)
1		
2		
3		

What was your speed for trial 1(Show your calculations in the space provided)? \qquad

For trial 2 (Show your calculations in the space provided)? \qquad

For trial 3 (Show your calculations in the space provided)?? \qquad

What caused your vehicle to move? How can you describe it?
\qquad
\qquad
\qquad
\qquad

Draw a Free body diagram to represent the forces acting on your balloon when it was stationary.

Draw a free body diagram to represent the forces acting on your vehicle when it was moving.

Graph the data for the 3 trials recorded.

8. How could you make the zip-line more efficient? (How can you make the object travel farther or faster?)
\qquad
\qquad
\qquad
\qquad
9. Besides measuring distance, what other factors of motion can you measure that would help to describe motion?
\qquad
\qquad
\qquad
10. Suppose you are riding in a car. Describe your motion relative to a car that is traveling in the same direction and the same speed.

Draw a free body diagram for a hot wheels car being pushed with 10N of force:

Draw a free body diagram of a book resting on a desk:

Draw a free body diagram of a student doing push-ups:
\square
Draw a free body diagram of a balloon floating upward with a force of 30 N :

